Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 82-90, 2024 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-38225846

RESUMO

Objective: To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Methods: Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 µmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ). Results: Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly ( P<0.05), while the expression of cyp7b1 had no significant difference ( P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 µmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area. Conclusion: After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.


Assuntos
Compostos Azo , Subunidade alfa 1 de Fator de Ligação ao Core , Células-Tronco Mesenquimais , Feminino , Camundongos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Esteroide 12-alfa-Hidroxilase/metabolismo , Camundongos Endogâmicos C57BL , Diferenciação Celular , Osteogênese , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Células da Medula Óssea , Células Cultivadas
2.
Clin Sci (Lond) ; 137(21): 1637-1650, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37910096

RESUMO

Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established. Therefore, we treated young-adult male and female wild-type (WT) and Cyp2c70-/- mice with antibiotics (AB) with broad specificity to deplete the gut microbiota and assessed the consequences on BA metabolism and liver pathology. Female Cyp2c70-/- mice did not tolerate AB treatment, necessitating premature termination of the experiment. Male Cyp2c70-/- mice did tolerate AB but showed markedly augmented liver pathology after 6 weeks of treatment. Dramatic downregulation of hepatic Cyp8b1 expression (-99%) caused a reduction in the proportions of 12α-hydroxylated BAs in the circulating BA pools of AB-treated male Cyp2c70-/- mice. Interestingly, the resulting increased BA hydrophobicity strongly correlated with various indicators of liver pathology. Moreover, genetic inactivation of Cyp8b1 in livers of male Cyp2c70-/- mice increased liver pathology, while addition of ursodeoxycholic acid to the diet prevented weight loss and liver pathology in AB-treated female Cyp2c70-/- mice. In conclusion, depletion of gut microbiota in Cyp2c70-/- mice aggravates liver pathology at least in part by increasing the hydrophobicity of the circulating BA pool. These findings highlight that the potential implications of AB administration to cholestatic patients should be evaluated in a systematic manner.


Assuntos
Colestase , Microbioma Gastrointestinal , Humanos , Masculino , Animais , Feminino , Camundongos , Ácidos e Sais Biliares/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Fígado/metabolismo , Antibacterianos , Camundongos Endogâmicos C57BL
3.
J Biol Chem ; 299(4): 103032, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806682

RESUMO

The human oxysterol 12α-hydroxylase cytochrome P450 8B1 (CYP8B1) is a validated drug target for both type 2 diabetes and nonalcoholic fatty liver disease, but effective selective inhibitors are not yet available. Herein, steroidal substrate-mimicking compounds with a pyridine ring appended to the C12 site of metabolism were designed as inhibitors, synthesized, and evaluated in terms of their functional and structural interactions with CYP8B1. While the pyridine nitrogen was intended to coordinate the CYP8B1 active site heme iron, none of these compounds elicited shifts in the CYP8B1 Soret absorbance consistent with this type of interaction. However, when CYP8B1 was cocrystallized with the pyridine-containing compound with the 3-keto-Δ4 steroid backbone most similar to the endogenous substrate, it was apparent that this ligand was bound in a channel leading to the active site, instead of near the heme iron. Inspection of this structure suggested that tryptophan 281 directly above the heme might restrict active site binding of potential inhibitors with this design. This hypothesis was supported when a CYP8B1 W281F mutation did allow all three compounds to coordinate the heme iron as designed. These results indicated that the design of next-generation CYP8B1 inhibitors should be compatible with the low-ceiling tryptophan immediately above the heme iron.


Assuntos
Diabetes Mellitus Tipo 2 , Esteroide 12-alfa-Hidroxilase , Humanos , Esteroide 12-alfa-Hidroxilase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Triptofano , Esteroides , Piridinas/farmacologia , Heme/metabolismo , Ferro/metabolismo
4.
Cell Stem Cell ; 29(9): 1366-1381.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055192

RESUMO

Although disrupted bile acid (BA) homeostasis is implicated in inflammatory bowel disease (IBD), the role of hepatic BA metabolism in the pathogenesis of colitis is poorly understood. Here, we found that cholic acid (CA) levels were increased in patients and mice. Cytochrome P450 8B1 (CYP8B1), which synthesizes CA, was induced in livers of colitic mice. CA-treated or liver Cyp8b1-overexpressing mice developed more severe colitis with compromised repair of the mucosal barrier, whereas Cyp8b1-knockout mice were resistant to colitis. Mechanistically, CA inhibited peroxisome proliferator-activated receptor alpha (PPARα), resulting in impeded fatty acid oxidation (FAO) and impaired Lgr5+ intestinal stem cell (ISC) renewal. A PPARα agonist restored FAO and improved Lgr5+ ISC function. Activation of the farnesoid X receptor (FXR) suppressed liver CYP8B1 expression and ameliorated colitis in mice. This study reveals a connection between the hepatic CYP8B1-CA axis and colitis via regulating intestinal epithelial regeneration, suggesting that BA-based strategies might be beneficial in IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Ácidos e Sais Biliares , Autorrenovação Celular , Ácido Cólico/metabolismo , Ácido Cólico/farmacologia , Colite/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo
5.
J Biol Chem ; 298(9): 102344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944583

RESUMO

Human cytochrome P450 8B1 (CYP8B1) is involved in conversion of cholesterol to bile acids. It hydroxylates the steroid ring at C12 to ultimately produce the bile acid cholic acid. Studies implicated this enzyme as a good drug target for nonalcoholic fatty liver disease and type 2 diabetes, but there are no selective inhibitors known for this enzyme and no structures to guide inhibitor development. Herein, the human CYP8B1 protein was generated and used to identify and characterize interactions with a series of azole inhibitors, which tend to be poorly selective P450 inhibitors. Structurally related miconazole, econazole, and tioconazole bound with submicromolar dissociation constants and were effective inhibitors of the native reaction. CYP8B was cocrystallized with S-tioconazole to yield the first X-ray structure. This inhibitor bound in the active site with its azole nitrogen coordinating the heme iron, consistent with inhibitor binding and inhibition assay data. Additionally, the CYP8B1 active site was compared with similar P450 enzymes to identify features that may facilitate the design of more selective inhibitors. Selective inhibitors should promote a better understanding of the role of CYP8B1 inhibition in normal physiology and disease states and provide a possible treatment for nonalcoholic fatty liver disease and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Azóis/química , Azóis/farmacologia , Azóis/uso terapêutico , Ácidos e Sais Biliares , Colesterol , Ácidos Cólicos , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Fármacos , Econazol/metabolismo , Heme/metabolismo , Humanos , Ferro , Miconazol , Nitrogênio , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Esteroide 12-alfa-Hidroxilase/metabolismo
6.
J Nutr Biochem ; 109: 109121, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940511

RESUMO

Fasting/feeding cycles regulate clock-lipid-bile acid (BA) metabolic homeostasis, and gut microbiota also participates in connecting circadian rhythms with BA metabolism. To investigate the cyclical nature of microbial-metabolism-host interactions, sixty male C57BL/6 mice were randomized into three feeding regimens with a chow diet: 24 h ad libitum (AC), 12 h nighttime feeding (NC) or 12 h daytime feeding (DC). Five weeks later, the mice were sacrificed at six-hour intervals over 24 hours. Daytime feeding abolished hepatic rhythmic expressions of Per1, Cry1/2 and Rev-erbα or changed the acrophase of Clock, Bmal1 and Per2, also the rhythmic expression of genes Hsl, Fas, Acc, Srebp-1c in lipid homeostasis and Cyp7a1, Cyp7b1, Cyp8b1, Lrh-1 and Shp in bile acid metabolism compared with their ad libitum and dark-fed companions. Furthermore, daytime feeding upregulated the levels of fecal primary BA, secondary BA and unconjugated BA at ZT0 and decreased their levels at ZT12. Meanwhile, daytime feeding altered the diversity of gut microbiota and microbiota compositions, with obviously higher abundance of Firmicutes and F/B ratio, and significantly lower abundance of Verrucomicrobia, as well as altered fluctuations of Akkermansia, Lactobacillus and Parabacteroides. In conclusion, shifting food intake to the rest phase caused a desynchronization in the liver between circadian rhythm and metabolism, as well as abnormal circadian variations in fecal BA profiles and gut microbiota.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Fatores de Transcrição ARNTL/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ritmo Circadiano/genética , Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451003

RESUMO

Small heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of SHP, FXR, CYP7A1, and CYP8B1. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood. Here, we report that liver-specific Shp knockout (LShpKO) mice have impaired negative feedback of Cyp7a1 and Cyp8b1 on bile acid challenge and demonstrate that a single copy of the Shp gene is sufficient to maintain this response. LShpKO mice also exhibit elevated total bile acid pool with ileal bile acid composition mimicking that of cholic acid-fed control mice. Agonistic activation of Fxr (GW4064) in the LShpKO did not alter the elevated basal expression of Cyp8b1 but lowered Cyp7a1 expression. We found that deletion of Shp led to an enrichment of distinct motifs and pathways associated with circadian rhythm, copper ion transport, and DNA synthesis. We confirmed increased expression of metallothionein genes that can regulate copper levels in the absence of SHP. LShpKO livers also displayed a higher basal proliferation that was exacerbated specifically with bile acid challenge either with cholic acid or 3,5-diethoxycarbonyl-1,4-dihydrocollidine but not with another liver mitogen, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. Overall, our data indicate that hepatic SHP uniquely regulates certain proliferative and metabolic cues.


Assuntos
Ácidos e Sais Biliares , Esteroide 12-alfa-Hidroxilase , Animais , Ácidos e Sais Biliares/metabolismo , Ciclo Celular , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Ácido Cólico/metabolismo , Cobre/metabolismo , DNA/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Filogenia , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo
8.
Circulation ; 145(13): 969-982, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35193378

RESUMO

BACKGROUND: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. METHODS: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study. RESULTS: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). CONCLUSIONS: Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.


Assuntos
Diabetes Mellitus Tipo 1 , Hipercolesterolemia , Hiperlipidemias , Animais , Ácidos e Sais Biliares/metabolismo , LDL-Colesterol , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Insulina , Fígado/metabolismo , Camundongos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo
9.
Steroids ; 178: 108952, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968450

RESUMO

Mice that lack the gene for expression of cytochrome P450 8B1 (P450 8B1) resist weight gain and improve glucose tolerance when fed a high-fat diet. Thus, the inhibition of P450 8B1 is a target to treat obesity-associated metabolic disorders. P450 8B1 is the enzyme that hydroxylates its substrate, 7α-hydroxy-cholest-4-en-3-one to 7α-,12α-dihydroxycholest-4-en-3-one, which ultimately results in the formation of cholic acid. Cholic acid is the 12α-hydroxylated bile acid implicated in enhanced absorption of cholesterol. The synthesis of a rationally designed inhibitor for P450 8B1 was achieved through the incorporation of a C12-pyridine in the C-ring of a steroid molecule. Seven days of new inhibitor treatment showed attenuation of glucose intolerance in mice that were fed a high fat and a high sucrose diet (HFHS) without affecting body weight. Taken together, these promising results will lead to a P450 8B1 inhibitor as a potential therapeutic strategy to treat obesity-associated insulin resistance.


Assuntos
Obesidade , Esteroide 12-alfa-Hidroxilase , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/uso terapêutico , Colesterol/metabolismo , Ácido Cólico/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Esteroide 12-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 12-alfa-Hidroxilase/metabolismo
10.
FASEB J ; 36(1): e22060, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862975

RESUMO

Farnesoid-x-receptor (FXR) agonists, currently trialed in patients with non-alcoholic steatosis (NAFLD), worsen the pro-atherogenic lipid profile and might require a comedication with statin. Here we report that mice feed a high fat/high cholesterol diet (HFD) are protected from developing a pro-atherogenic lipid profile because their ability to dispose cholesterol through bile acids. This protective mechanism is mediated by suppression of FXR signaling in the liver by muricholic acids (MCAs) generated in mice from chenodeoxycholic acid (CDCA). In contrast to CDCA, MCAs are FXR antagonists and promote a CYP7A1-dependent increase of bile acids synthesis. In mice feed a HFD, the treatment with obeticholic acid, a clinical stage FXR agonist, failed to improve the liver histopathology while reduced Cyp7a1 and Cyp8b1 genes expression and bile acids synthesis and excretion. In contrast, treating mice with atorvastatin mitigated liver and vascular injury caused by the HFD while increased the bile acids synthesis and excretion. Atorvastatin increased the percentage of 7α-dehydroxylase expressing bacteria in the intestine promoting the formation of deoxycholic acid and litocholic acid, two GPBAR1 agonists, along with the expression of GPBAR1-regulated genes in the white adipose tissue and colon. In conclusion, present results highlight the central role of bile acids in regulating lipid and cholesterol metabolism in response to atorvastatin and provide explanations for limited efficacy of FXR agonists in the treatment of NAFLD.


Assuntos
Atorvastatina/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/tratamento farmacológico , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Esteroide 12-alfa-Hidroxilase/metabolismo , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/metabolismo , Doenças Vasculares/microbiologia
11.
Nutrients ; 13(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207558

RESUMO

Hypercholesterolemia can cause many diseases, but it can effectively regulated by Lactobacillus. This study aimed to evaluate the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillusparacasei strain 201. These results showed that both the strains decreased serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), liver TC and TG and increased fecal TC, TG and total bile acid (TBA) levels. Additionally, both strains also reduced glutamic-pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and levels of tissue inflammation levels to improve the lipid profile, and they reduced fat accumulation partially by alleviating inflammatory responses. Furthermore, both strains regulated the expression of the CYP8B1, CYP7A1, SREBP-1, SCD1 and LDL-R gene to promote cholesterol metabolism and reduce TG accumulation. Interventions with both strains also altered the gut microbiota, and decreasing the abundance of Veillonellaceae, Erysipelotrichaceae and Prevotella. Furthermore, fecal acetic acid and propionic acid were increased by this intervention. Overall, the results suggested that E. faecium strain 132 and L. paracasei strain 201 can alleviate hypercholesterolemia in rats and might be applied as a new type of hypercholesterolemia agent in functional foods.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Enterococcus faecium , Hipercolesterolemia/microbiologia , Lacticaseibacillus paracasei , Probióticos/farmacologia , Ácido Acético/análise , Animais , Colesterol 7-alfa-Hidroxilase/metabolismo , LDL-Colesterol/metabolismo , Modelos Animais de Doenças , Fezes/química , Fezes/microbiologia , Alimento Funcional/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Propionatos/análise , Ratos , Estearoil-CoA Dessaturase/metabolismo , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
12.
J Ethnopharmacol ; 274: 114051, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33746001

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Swertia mussotii Franch (SMF) is a well-known Tibetan medicine for the treatment of liver disease in China. However, the chemical profile and molecular mechanism of SMF against hepatic fibrosis are not yet well explored. AIM OF THE STUDY: This work aimed to elucidate the chemical profile of SMF and investigate the action mechanisms of SMF against carbon tetrachloride (CCl4)-induced hepatic fibrosis. MATERIALS AND METHODS: Ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOFMS) and UNIFI platform was firstly employed to reveal the chemical profile of SMF. Cross-platform serum metabolomics based on gas chromatography/liquid chromatography-mass spectrometry were performed to characterize the metabolic fluctuations associated with CCl4-induced hepatic fibrosis in mice and elucidate the underlying mechanisms of SMF. Western blotting was further applied to validate the key metabolic pathways. RESULTS: A total of 31 compounds were identified or tentatively characterized from SMF. Twenty-seven differential metabolites were identified related with CCl4-induced liver fibrosis, and SMF could significantly reverse the abnormalities of seventeen metabolites. The SMF-reversed metabolites were involved in arachidonic acid metabolism, glycine, serine and threonine metabolism, tyrosine metabolism, arginine and proline metabolism, primary bile acid biosynthesis, glycerophospholipid metabolism and TCA cycle. The results of western blotting analysis showed that SMF could alleviate liver fibrosis by increasing the levels of CYP7A1, CYP27A1 and CYP8B1 and decreasing the level of LPCAT1 to regulate the metabolic disorders of primary bile acid biosynthesis and glycerophospholipid. CONCLUSION: It could be concluded that primary bile acid biosynthesis and glycerophospholipid metabolism were the two important target pathways for SMF-against liver fibrosis, which provided the theoretical foundation for its clinical use.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Swertia , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Glicerofosfolipídeos/metabolismo , Cirrose Hepática/metabolismo , Masculino , Medicina Tradicional Tibetana , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Esteroide 12-alfa-Hidroxilase/metabolismo , Swertia/química
13.
Nat Metab ; 3(1): 59-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462514

RESUMO

Activating transcription factor (ATF)3 is known to have an anti-inflammatory function, yet the role of hepatic ATF3 in lipoprotein metabolism or atherosclerosis remains unknown. Here we show that overexpression of human ATF3 in hepatocytes reduces the development of atherosclerosis in Western-diet-fed Ldlr-/- or Apoe-/- mice, whereas hepatocyte-specific ablation of Atf3 has the opposite effect. We further show that hepatic ATF3 expression is inhibited by hydrocortisone. Mechanistically, hepatocyte ATF3 enhances high-density lipoprotein (HDL) uptake, inhibits intestinal fat and cholesterol absorption and promotes macrophage reverse cholesterol transport by inducing scavenger receptor group B type 1 (SR-BI) and repressing cholesterol 12α-hydroxylase (CYP8B1) in the liver through its interaction with p53 and hepatocyte nuclear factor 4α, respectively. Our data demonstrate that hepatocyte ATF3 is a key regulator of HDL and bile acid metabolism and atherosclerosis.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Aterosclerose/prevenção & controle , Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteínas E/genética , Colesterol na Dieta/metabolismo , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Receptores Depuradores Classe B/metabolismo , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Hepatology ; 73(6): 2251-2265, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33098092

RESUMO

BACKGROUND AND AIMS: Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS: Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS: The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.


Assuntos
Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteína Supressora de Tumor p53/metabolismo , Animais , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Colesterol 7-alfa-Hidroxilase/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Esteroide 12-alfa-Hidroxilase/metabolismo , Triglicerídeos/sangue , Proteína Supressora de Tumor p53/genética
15.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G303-G308, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597704

RESUMO

The purpose of this study was to demonstrate the aberrant metabolism of bile acids in patients with cholesterol gallstone and explore for its underlying mechanisms. The composition of bile acids collected from the patients with cholelithiasis and the control individuals was analyzed by LC-MS. The expression of genes regulating the metabolism of bile acids was quantitatively determined by real-time PCR or Western blot analysis. Cholesterol saturation index of patients with gallstone was significantly higher than that of the controls. The concentrations of taurodeoxycholic acid and taurolithocholic acid in the bile of patients were significantly higher than that of the controls. When compared with the controls, it was remarkable in the patients that the mRNA expression of farnesoid X receptor (FXR) was lower, whereas that of organic anion transporting polypeptide (OATP1A2) was higher. However, the expressions of both mRNA and protein of cytochrome P-450 family 8 subfamily B member 1 (CYP8B1) did not differ between the patients and the controls. Although the protein level of CYP8B1 was significantly lower in the subjects with single nucleotide polymorphism (SNP) rs3732860(G), the composition of bile acids and the ratio of CA to CDCA remained unaltered in the patients with different SNP genotype of CYP8B1. In conclusion, the axis of FXR-OATP1A2 that physiologically regulated the reabsorption of bile acids might play an important role in the composition of bile acids and the development of gallstone. CYP8B1 gene was irrelevant to the altered composition of bile acids in patients with gallstone.NEW & NOTEWORTHY For the first time, our results indicate that the axis of farnesoid X receptor-organic anion transporter polypeptide 1A2 that physiologically regulates the reabsorption of bile acids might play an important role in the regulation of the composition of bile acids and make contribution to the development of cholelithiasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colelitíase/genética , Colesterol/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Ligação a RNA/genética , Adulto , Colelitíase/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Ácido Taurodesoxicólico/metabolismo , Ácido Taurolitocólico/metabolismo
16.
J Nutr Biochem ; 83: 108412, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534424

RESUMO

High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.


Assuntos
Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Animais , Ácidos e Sais Biliares/química , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Humanos , Hidroxilação , Fígado/enzimologia , Fígado/metabolismo , Masculino , Ratos , Ratos Endogâmicos WKY , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Triglicerídeos/metabolismo
17.
Arch Toxicol ; 94(2): 589-607, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894354

RESUMO

Anabolic-androgenic steroids are testosterone derivatives, used by body-builders to increase muscle mass. Epistane (EPI) is an orally administered 17α-alkylated testosterone derivative with 2a-3a epithio ring. We identified four individuals who, after EPI consumption, developed long-lasting cholestasis. The bile acid (BA) profile of three patients was characterized, as well the molecular mechanisms involved in this pathology. The serum BA pool was increased from 14 to 61-fold, basically on account of primary conjugated BA (cholic acid (CA) conjugates), whereas secondary BA were very low. In in vitro experiments with cultured human hepatocytes, EPI caused the accumulation of glycoCA in the medium. Moreover, as low as 0.01 µM EPI upregulated the expression of key BA synthesis genes (CYP7A1, by 65% and CYP8B1, by 67%) and BA transporters (NTCP, OSTA and BSEP), and downregulated FGF19. EPI increased the uptake/accumulation of a fluorescent BA analogue in hepatocytes by 50-70%. Results also evidenced, that 40 µM EPI trans-activated the nuclear receptors LXR and PXR. More importantly, 0.01 µM EPI activated AR in hepatocytes, leading to an increase in the expression of CYP8B1. In samples from a human liver bank, we proved that the expression of AR was positively correlated with that of CYP8B1 in men. Taken together, we conclude that EPI could cause cholestasis by inducing BA synthesis and favouring BA accumulation in hepatocytes, at least in part by AR activation. We anticipate that the large phenotypic variability of BA synthesis enzymes and transport genes in man provide a putative explanation for the idiosyncratic nature of EPI-induced cholestasis.


Assuntos
Ácidos e Sais Biliares/sangue , Colestase/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Congêneres da Testosterona/toxicidade , Adulto , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Ácido Cólico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Receptores Androgênicos/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
18.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653116

RESUMO

: Non-alcoholic fatty liver disease (NAFLD) is a major public health problem in many countries. In this study, the ability of Grifola frondosa heteropolysaccharide (GFP) to ameliorate NAFLD was investigated in rats fed a high-fat diet (HFD). The molecular mechanisms modulating the expression of specific gene members related to lipid synthesis and conversion, cholesterol metabolism, and inflammation pathways were determined. The components of the intestinal microflora in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Supplementation with GFP significantly increased the proportions of Allobaculum, Bacteroides, and Bifidobacterium and decreased the proportions of Acetatifactor, Alistipes, Flavonifractor, Paraprevotella, and Oscillibacter. In addition, Alistipes, Flavonifractor, and Oscillibacter were shown to be significant cecal microbiota according to the Spearman's correlation test between the gut microbiota and biomedical assays (|r| > 0.7). Histological analysis and biomedical assays showed that GFP treatments could significantly protect against NAFLD. In addition, Alistipes, Flavonifractor, and Oscillibacter may play vital roles in the prevention of NAFLD. These results suggest that GFP could be used as a functional material to regulate the gut microbiota of NAFLD individuals.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Grifola/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Polissacarídeos/farmacologia , Animais , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Polissacarídeos/uso terapêutico , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Wistar , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
19.
J Mol Evol ; 87(7-8): 209-220, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31372666

RESUMO

The CYP8B1 gene is known to catalyse reactions that determine the ratio of primary bile salts and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-mole rats, elephants and manatees using forward genomics approaches. We screened the CYP8B1 gene sequence of more than 200 species and test for relaxation of selection along each terminal branch. The need for retaining a functional copy of the CYP8B1 gene is established by the presence of a conserved open reading frame across most species screened in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied by an exceptional ten amino acid extension at the C-terminal end through a single base frame-shift deletion. We also verify that the coding frame disrupting mutations previously reported in the elephant are correct, are shared by extinct Elephantimorpha species and coincide with the dietary switch to herbivory. Relaxation of selection in the CYP8B1 gene of the wombat (Vombatus ursinus) also corresponds to drastic change in diet. In summary, our forward genomics-based screen of bird and mammal species identifies recurrent changes in the selection landscape of the CYP8B1 gene concomitant with a change in dietary lipid content.


Assuntos
Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Aves/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Dieta , Evolução Molecular , Metabolismo dos Lipídeos , Lipídeos , Mamíferos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
20.
Food Funct ; 10(7): 3839-3850, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31210195

RESUMO

Cholestatic liver injury induced by estrogen is a common clinical syndrome in women undergoing oral administration of contraceptives, pregnancy or hormone replacement therapy. Estrogen-induced cholestasis is associated with the accumulation of endogenous bile acids, which play critical roles in the disease progression and symptoms. In the present study, we described the protective effect of auraptene, a simple coumarin present in the peels of citrus fruits, such as grapefruit, against 17α-ethinylestradiol (EE)-induced cholestasis, and further elucidated the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect. Auraptene treatment alleviated EE-induced cholestasis through increasing the bile flow and biliary bile acid output. The mechanism underlying the alleviated cholestasis by auraptene was associated with the increased efflux and inhibited hepatic uptake of bile acids via an induction of efflux transporters (Bsep and Mrp2) and downregulation of Ntcp. Furthermore, auraptene reduced the bile acid synthesis through repressing Cyp7a1 and Cyp8b1, and increased the bile acid metabolism through an induction in the gene expression of Sult2a1. The mentioned genes involved in the bile acid homeostasis were modulated by FXR. We further demonstrated that the changes in transporters and enzymes, as well as ameliorated liver histology by auraptene, were abrogated by the FXR antagonist guggulsterone. In conclusion, auraptene alleviated EE-induced cholestasis due to FXR-mediated gene regulation.


Assuntos
Colestase/tratamento farmacológico , Colestase/prevenção & controle , Citrus/química , Cumarínicos/farmacologia , Extratos Vegetais/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Colestase/induzido quimicamente , Colesterol 7-alfa-Hidroxilase , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Sulfotransferases/metabolismo , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...